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What do we know about Dark Matter?

23% of energy of the Universe in 
cold dark matter ΩCDMh2 = 0.106± 0.008

Dark:  weak coupling to photons

DM-DM interactions small

Stable or very long lived

Interacts with gravity



WIMP:  stable, neutral particle with weak scale 
couplings and mass

Γann ∼ H

ΩCDMh2 ∼ 10−10GeV−2

< σv >

• Thermal relic, freezes out when 

For                            and mweak ∼ 102−3GeV gweak ∼ 0.6

• Connection between DM and particle 
physics: SUSY, extra dimensions,...

< σv >∼ g4
weak

m2
weak

→ ΩCDMh2 ∼ 0.1



WIMPs are compelling Dark Matter Candidates!

But...



WIMPs are compelling Dark Matter Candidates!

But...

?



Could we have “Dark Electromagnetism”? 

with M. Buckley, S. Carroll, M. Kamionkowski arXiv:0810.5126

• Dark Matter sector consists of 
(fermionic) DM      and  “dark photons” χ γ̂

Why would Dark E&M be interesting?

A U(1) gauge symmetry protects the mass of the 
dark photon Natural long-range force!=⇒



Why didn’t people think of it before?

• The Universe should have a zero net charge

• Equal number of positive and negative charges 

• Then, all the dark matter 
should annihilate away!

But, if the DM number density is low enough they 
wouldn’t find each other and wouldn’t annihilate



Dark Matter Relic Abundance

ΩCDMh2 = 0.106± 0.008

• Mass of DM particle
• Dark fine-structure constant 

mχ

α̂ =
ê2

4π

Dark electromagnetism has two parameters:

Given       what value of     gives the correct relic 
abundance?

α̂mχ



freeze-out

xf = m/Tf ≈ 25

ΩDMh2 = 1.07× 109
(n + 1)xn+1

f GeV−1

(g∗S/
√

g∗)mPl < σv >

Γannh ∼ H



DM in equilibrium through annihilation to  ̂γ

For TeV-scale DM

α̂ ∼ 10−2
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What is different about having a            ?  

• Halo is            neutral
• Can have long-range interactions between   
• Scattering cross-section at low-velocities:

                    relevant for galactic dynamics, but
irrelevant for early universe annihilations

U(1)D
χ/χ̄

σ ∝ v−4

Short-range force long-range force

U(1)D



Is DM collisionless or is collisionless a ?

DM in cluster CL0024+1654

Baryons collide, loose energy 
and settle down

DM remains dilute

[Kneib, Ellis & Treu]



Bullet Cluster

[Clowe et al.]

• Collisional gas slowed      

• “Collisionless” DM 
   passes trough

σ/m ≤ 1.25 cm2/g ≈ 2× 1012 pb/GeV
(

α2

m3
W

∼ 10−14cm2/g
)

WIMPs



Increase collisions DM 
less cuspy cores and 
more spherical haloes

Simulated clusters and their cores:

2

Fig. 1.— Projected mass distributions in a box 15h−1Mpc on
a side. The collision cross-sections per unit mass, core radii, axis
ratios for each model and small panels showing the central region
(2h−1Mpc on a side, enlarged) in a different color scale are given to
the right of the corresponding image.

2. THE SIMULATIONS

Our simulations use the parallel tree code GADGET
developed by Springel (1999, see also Springel, Yoshida &
White 2000). We study the same cluster as Yoshida et
al. (2000) who resimulated the second most massive ob-

ject in the ΛCDM simulation of Kauffmann et al. (1999).
In order to simulate elastic scattering of CDM particles
we adopt the Monte Carlo method introduced by Burkert
(2000). We implement this scheme in the following man-
ner. At each time step we evaluate the scattering proba-
bility for particle i,

P = ρiσ
∗Vrel∆t, (1)

where ρi is the local density at the particle’s position, σ∗ is
the scattering cross-section per unit mass, Vrel = |vi−vngb|
is the relative velocity between the particle and its near-
est neighbour, and ∆t is the time step. This prescrip-
tion is similar to Burkert’s, but uses the relative velocity
rather than the absolute velocity of particle i. Kocha-
neck & White (2000) use a similar scheme but estimate
the scattering rate more accurately by looping over a cer-
tain number of neighbours. However, the larger smoothing
involved in such a procedure can itself introduce difficul-
ties in regions with significant velocity gradients (Meiburg
1986), and so we prefer our simpler scheme which should
be unbiased even if somewhat noisier. We choose timesteps
small enough to ensure that a particle travels only a mi-
nor fraction of its mean free path within ∆t. We assume
each collision to be elastic, of hard-sphere type, and to
have a cross-section independent of velocity. Scattering is
assumed isotropic in the center-of-mass frame, so that rel-
ative velocities are randomly reoriented in each collision.
We carry out simulations for three values of σ∗ differing
by factors of ten.

Most of our simulations employ 0.5×106 particles in the
high resolution region, with a mass per particle mp =
0.68 × 1010h−1M#. The gravitational softening length is
set to 20h−1kpc, which is ∼1.4% of the virial radius of the
final cluster. We ran one simulation with 5 times better
mass resolution and 7 times better spatial resolution to
check for numerical convergence. All of our resimulations
start from the same initial conditions. The background
cosmology is flat with matter density Ωm = 0.3, cosmo-
logical constant ΩΛ = 0.7 and expansion rate H0 = 70
km−1Mpc−1. It has a CDM power spectrum normalised
so that σ8 = 0.9. The virial mass of the final cluster is
M200 = 7.4 × 1014h−1M#, determined as the mass within
the radius R200 = 1.46h−1Mpc where the enclosed mean
overdensity is 200 times the critical value.

3. RESULTS

The large-scale matter distribution in all our simulations
looks very similar. Because we start from identical initial
conditions, the particle distributions differ only in regions
where collisions are important. Figure 1 shows that the
final cluster is more nearly spherical and has a larger core
radius for larger collision cross-section. The quoted ax-
ial ratios are determined from the inertia tensors of the
matter at densities exceeding 100 times the critical value.
Miralda-Escude (2000) argues that the ellipticity of clus-
ter cores, as inferred from gravitational lensing observa-
tions, can be used to limit the interaction cross-section.
Among our final clusters, S1W-b and S1W-c are severely
constrained by the limits he quotes.

In Figure 2 we show density profiles for all of our sim-
ulations. Also plotted in the bottom panel is the mean
collision number per particle. (We counted collisions for
each particle throughout the simulation.) Figure 2 clearly
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the right of the corresponding image.

2. THE SIMULATIONS

Our simulations use the parallel tree code GADGET
developed by Springel (1999, see also Springel, Yoshida &
White 2000). We study the same cluster as Yoshida et
al. (2000) who resimulated the second most massive ob-

ject in the ΛCDM simulation of Kauffmann et al. (1999).
In order to simulate elastic scattering of CDM particles
we adopt the Monte Carlo method introduced by Burkert
(2000). We implement this scheme in the following man-
ner. At each time step we evaluate the scattering proba-
bility for particle i,

P = ρiσ
∗Vrel∆t, (1)

where ρi is the local density at the particle’s position, σ∗ is
the scattering cross-section per unit mass, Vrel = |vi−vngb|
is the relative velocity between the particle and its near-
est neighbour, and ∆t is the time step. This prescrip-
tion is similar to Burkert’s, but uses the relative velocity
rather than the absolute velocity of particle i. Kocha-
neck & White (2000) use a similar scheme but estimate
the scattering rate more accurately by looping over a cer-
tain number of neighbours. However, the larger smoothing
involved in such a procedure can itself introduce difficul-
ties in regions with significant velocity gradients (Meiburg
1986), and so we prefer our simpler scheme which should
be unbiased even if somewhat noisier. We choose timesteps
small enough to ensure that a particle travels only a mi-
nor fraction of its mean free path within ∆t. We assume
each collision to be elastic, of hard-sphere type, and to
have a cross-section independent of velocity. Scattering is
assumed isotropic in the center-of-mass frame, so that rel-
ative velocities are randomly reoriented in each collision.
We carry out simulations for three values of σ∗ differing
by factors of ten.

Most of our simulations employ 0.5×106 particles in the
high resolution region, with a mass per particle mp =
0.68 × 1010h−1M#. The gravitational softening length is
set to 20h−1kpc, which is ∼1.4% of the virial radius of the
final cluster. We ran one simulation with 5 times better
mass resolution and 7 times better spatial resolution to
check for numerical convergence. All of our resimulations
start from the same initial conditions. The background
cosmology is flat with matter density Ωm = 0.3, cosmo-
logical constant ΩΛ = 0.7 and expansion rate H0 = 70
km−1Mpc−1. It has a CDM power spectrum normalised
so that σ8 = 0.9. The virial mass of the final cluster is
M200 = 7.4 × 1014h−1M#, determined as the mass within
the radius R200 = 1.46h−1Mpc where the enclosed mean
overdensity is 200 times the critical value.

3. RESULTS

The large-scale matter distribution in all our simulations
looks very similar. Because we start from identical initial
conditions, the particle distributions differ only in regions
where collisions are important. Figure 1 shows that the
final cluster is more nearly spherical and has a larger core
radius for larger collision cross-section. The quoted ax-
ial ratios are determined from the inertia tensors of the
matter at densities exceeding 100 times the critical value.
Miralda-Escude (2000) argues that the ellipticity of clus-
ter cores, as inferred from gravitational lensing observa-
tions, can be used to limit the interaction cross-section.
Among our final clusters, S1W-b and S1W-c are severely
constrained by the limits he quotes.

In Figure 2 we show density profiles for all of our sim-
ulations. Also plotted in the bottom panel is the mean
collision number per particle. (We counted collisions for
each particle throughout the simulation.) Figure 2 clearly

[Yoshida et al.]

σ/m = 0 σ/m = 0.1 cm2/g σ/m = 1 cm2/g σ/m = 10 cm2/g



There are suggestions that a                 is preferred 
by simulations   

Less cuspy cores, less # dwarf galaxies σ/m ∼ 0.5− 5cm2/g

•  Possibly too much interaction: lensing study from cluster 
shows ellipticity of DM distribution
[Miralda-Escude]

σ/m < 0.05 cm2/g

We take the limit to be   hard scattering per DM in 
the Galactic halo per         years

1
1010

time between collisions

ρ = nmχ = 0.3 GeV/cm3

v/c = 10−3

σ/m ! 0.3 cm2/g=⇒
τ =

1
nσv

σ/m != 0



  DM can change its kinetic energy via:   
• Scattering
• Hard scattering:    collision 
• Soft scattering: multiple collisions  

• Bremsstrahlung: emission of     when DM
     accelerates    

1 ∆v/v ∼ O(1)
∆v/v ∼ O(1)

γ̂

Long-range             force         interactions  U(1)D χ/χ̄=⇒

Galactic Dynamics effects



Hard Scattering

Hard Scattering

•                increases as          , as radius in which 
potential of same order as kinetic energy increases

• Can estimate 

15

σscattering v → 0

τ =
1

nσv
σhard ≈ b2

hard bhard =
8πα̂

v2mχ

b
!

!

 assuming DM viralized in Galaxy

(
N ≈ 1064 1 TeV

mχ

)

τhard

τGalaxy
=

G2m4
χN

6(4πα̂)2
! 50

increases as v → 0

as radius at which                          increasesV (r) ∝ 1
r
∼ 1

2
mχv2

V (r) =
α̂

r
∼ 1

2
mχv2

bhard =
2α̂

v2mχ

σhard ≈ b2
hard =

4α̂2

m2
χv4

σhard



Hard Scattering constraint

Average time for a hard scatter for DM is greater 
than the age of the Universe

=⇒

τ =
1

nσv
! τuniverse

For Milky Way:

τuniverse ∼ 50 τdyn

τdyn = 2πR/v

τ

τdyn
=

2R2

3Nσ
! 50

v !
√

GMGal

R

τhard

τdyn
=

G2m4
χN

6α̂2
! 50

N ≈ 1064
( mχ

TeV

)−1



Soft scattering

Soft Scattering

• Additionally, can ‘softly’ scatter many times, exchanging 
~K.E. when integrated over all interactions

• This is dominate effect, due to integration over all 
distances: enhanced by Coulomb logarithm

16

b
!

!

"v

"v

δv = ±2(4πα̂)
mχbv

squared and integrated over all impact 
parameters (for one orbit of Galaxy)

∆v2 =
8(4πα̂)2N
m2

χv2R2
ln

(
GNm2

χ

8πα̂

)

τsoft

τGalaxy
=

G2m4
χN

8(4πα̂)2
ln−1

(
GNm2

χ

8πα̂

)
! 50δv =

2α̂

mχbv

Per approach:

b b + δb
Taking into account:
• # interactions between    and 
 
• Integrating over impact parameters      

δn = (N/πR2)2πbdb

bhard < b < R

DM can “softly” scatter many times
•    Kinetic E.             when integrated over all 
interactions  

∆ ∼ O(1)



      as the DM particle orbits once through the halo∆v2

∆v2 =
8α̂2N

m2
χv2R2

ln

(
GNm2

χ

2α̂

)

Cannot loose                       during the history of 
the Universe (                          )

∆v2/v2 ∼ O(1)
τuniverse ∼ 50 τdyn

# orbits       !

τsoft

τdyn
=

G2m4
χN

8α̂2
ln−1

(
GNm2

χ

2α̂

)
! 50

This is the dominating effect: due to integrating over 
all distances, enhanced by Coulomb log

→ ∆v2/v2 ∼ O(1) 50



Bremsstrahlung

DM can emit a     when accelerates during a collision γ̂

dEnergy

dω
∝ |d(ω)|2 (!d = −ê!r)

During soft collisions cannot loose 
during the lifetime of the Universe

This bound is weaker than hard and soft scattering

∆v2/v2 ∼ O(1)

3
64

Gm3
χR

α̂3
ln−1

(
GNm2

χ

2α̂

)
≥ 50
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Relic abundance and Galactic Structure

cannot provide the correct relic abundanceU(1)D



           cannot provide the correct relic abundance 
and satisfy galactic structure 
U(1)D

Solution:  couple the dark matter to the ordinary
weak interactions as well as to 

• Weak interactions        correct relic abundance
• Scattering due to                    
• At late times becomes important

=⇒
U(1)D ∝ v−4

Can have correct relic abundance and 
α̂ ! 10−3 for mχ ∼ 1 TeV

Bonus: 
dark charge conservation ensures DM stability

U(1)D



If DM couples to SM weak interactions and to dark 
photons, shouldn’t we have detected dark photons?

Dark photons only couple directly to DM

Zero! +/- dark charge in the loop from

a) b)

SU(2)L

χ/χ̄



Dark photon interactions with SM fermions only
at two loops

Very weak effective interaction!
• DM would look like WIMPs in direct detection 
experiments
• Effects of Dark Radiation could be seen in halo 
structure (for     near soft scattering limit)α̂



Potential Early Universe problems
of Dark E&M:

1. New light particles and BBN bound
OK-- temperature of dark background 
radiation is low

2. Structure Formation
OK-- charged DM decouples from the dark 
background radiation very early



1. New light particles and BBN bound

From BBN bound can derive limits on particle 
content and dark temperature T̂

• Define ratio ξ(T ) = T̂ /T

 After visible and dark sector decouple, 
freeze out of d.o.f causes 

Nν = 3.24± 1.2 (2σ)

BBN bound: glightξ(TBBN)4 =
7
8
× 2× (Nν − 3) ≤ 2.52

ξ != 1



• Conservation of entropy in each sector after they decouple

BBN bound: glightξ(TBBN)4 =
7
8
× 2× (Nν − 3) ≤ 2.52

glight

[
gheavy + glight

glight

g∗vis(TBBN)
g∗vis(Tdecop)

]4/3

ξ(Tdecop)4 ≤ 2.52

Minimal Dark Sector: γ̂ glight = 2χ gheavy = 3.5

In the case of DM having weak interactions and U(1)D

temperatures might track until DM freeze out

g∗vis ≥ 18.8 OK as long as freeze out before
QCD transition ∼ 200MeV



2. Structure Formation

Until DM decouples from      density perturbations 
cannot grow 

γ̂

Decoupling occurs when    stops imparting significant 
velocity to DM

Thomson cross 
section

Radiation 
Pressure

F =
4
3
σ̂T aT̂ 4v

σ̂T =
8π

3
α̂2

m2
χ

Hubble time (radiation)

γ̂

t−1
diss ≡ v−1 dv

dt
= v−1 F

mχ
= H

H2 =
4π3

45
g∗

T 4

m2
Pl



Find

Decouples very early!  
No suppression of 
structure formation

1 + z∗ = 2.3× 1020ξ−4

(
10−3

α̂

)2 ( mχ

TeV

)3
g∗(T )1/2

(
g∗S(T )
g∗S(T0)

)2/3



Interesting open question:  do phenomena of
“dark magnetohydrodynamics” dramatically
affects the evolution of structure?

DM halos consist of          plasma  χ/χ̄

One possibility:  Weibel (Firehose) instability

Exponential growth of magnetic fields in plasmas 
with a velocity anisotropy
•  Velocity anisotropy when subhalos collide?
• Needs seed magnetic field



Weibel instability will affect how larger halos are 
constructed from the collision of smaller halos when

τcollision ∼ Γ−1
Γ = ωp

v

c
=

√
(4π)2α̂ρ

m2
χ

v

c
∼ 10−2s−1 α̂1/2

mχ/TeV

Relevant when
( mχ

TeV

)
! 1011α̂1/2

(
τ

106 yrs

)

This is all the parameter space of interest!



The Weibel
instability is
very rapid
on the 
timescales
for subhalos
to collide
in the 
process of
galaxy 
formation.

Impact?

[Quinn et al.]



Conclusions

The dark matter sector could be minimal: cold and 
collisionless or more complicated with the addition 
of long range forces

Dark electromagnetism alone cannot satisfy the 
observed relic abundance and galactic structure 
bounds 

Could have DM with weak scale interactions and 
dark E&M. Dark E&M effects perhaps only seen 
through galactic dynamics

We need to understand dark magnetohydrodinamics???


